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On the asymptotic behaviour of the solutions of the two 
inhomogeneous differential equations occurring in the 
theory of the relativistic Stark effect 

M. L. BARTLETT 
Department of Physics, University College London 
MS. received 14th June 1968, in revisedforna 16th October 1968 

Abstract. Evaluation of the coefficients up to the second order is made in the 
asymptotic expansion of the generalized hypergeometric function which arises in the 
problem of solving the Dirac equation for the electron of a hydrogen atom in an 
external electric field. The method used is a calculation of the residues in the Barnes 
integral for the function, and in doing this calculation a derivation of the coefficients 
is given, so showing how the method can be used for pFp generalized hypergeometric 
functions in general. 

1. Introduction 
A calculation of the static polarizability, or equivalently the Stark energy shifts, of a 

ground-state hydrogen atom in an external constant and uniform electric field can be 
performed by Dalgarno's method (Dalgarno 1963). That is, tl is required, where 

( 0  12 In ) la!O ) 
n # ~  En-E, 

tl = e2 2' 
Because questions of convergence are central to the relativistic calculation, the method is 

here outlined to show how these arise if the above expression is used as the starting point. 
If we define [x) as a solution of 

(H-Eo)IX) = 4 0 )  (1) 
where the H, [ n }  and En are the Dirac Hamiltonian, states and energies of the electron in 
the hydrogen atom, then it follows that 

( O ' a ( n )  ( n l H - E o ' x )  
<O;x'n)(~l@) = C' 

n#O "- E,-E, n#O En - Eo 

and so 
M. = e2(OjxlX). 

Alternatively, if we identify the c1 from the second-order Stark energy shift, the state ix} 
is the first-order correction to the ground-state wave function in a perturbation expansion 
in the perturbing electric field, and the same conditions on lx> are required as the above 
leads to. That  is, Ix} must be in the Hilbert space for the operator H. It is further required 
that the Jx ) gives in the non-relativistic limit the non-relativistic polarizability. 

A reduction and separation of the equation (1) (Bartlett 1968) is fairly complex. If / x>  
is written 

Ix)  = Gq- + Fq- + Gq- +Ep- 
where q* and p+ are spherical spinors, and q1 has angular momentumj = 4, and q* has 
j = $, then the 'barred' part of the solution is relatively simple, and there are no con- 
vergence problems. The  other parts of the solutions have a different character, if F and G 
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are written 

so defining Y and @. Then these Y and 0 satisfy the equations 

where y = (1 - 2 ) l I 2 ,  T = (4- x2)li2; here U is the fine structure constant. 
On solving these equations by the series method, the generalized hypergeometric 

function ,F,(x) is obtained for the particular integral, and the confluent hypergeometric 
function lF,(x) for one of the complementary functions; these are given in 5 5 .  T o  form the 
required combination of these functions in the physical problem above, the asymptotic 
behaviour at large x of these functions is required. However, only that for the confluent 
hypergeometric function is at present tabulated. 

In  this paper a procedure is developed to extract explicitly the lower-order coefficients 
in the asymptotic expansion of generalized hypergeometric functions of the form nFn(x) 
with real x. It is based on Barnes's methods (Barnes 1907), but for these restricted functions 
required in the polarizability calculations the derivation is given as completely as is necessary 
to extract the coefficients. 

The  general procedure is as follows: a function S(s) is defined such that the contour 
integral 

S(S)X' ds = K,F,(x) s K + V + A  

with K a known constant. The function S(s) has two series of poles, and the contour 
K + V +  A, defined and illustrated in $ 3 ,  can be split into distinct parts K ,  v, A. The total 
contour enclosing one series of poles yields the hypergeometric function, one of the parts 
containing the second series of poles giving the asymptotic series. The  function S(s) 
is defined as the analytic continuation of a function T(s), which is a sum of terms T,(s), each 
a product of gamma functions. The asymptotic equalities of the gamma function are 
known, and via these the properties and poles of S(s) are deduced; in particular, the residues 
at the poles give the expansion coefficients f,(s,) in the asymptotic expansion. 

For the particular functions involved as the solution to the radial equations ten co- 
efficients-first- and second-order for five different functions-are evaluated. 

2. The asymptotic behaviour of T,(s) 
The  function T,(s) is defined by 

for all s, with U ,  f r  # 0, - 1, -2, ..., and t = 0, 1, 2,  ... . An expansion asymptotic in the 
variable t is required for this function. To  obtain this the asymptotic equality is needed for 
the gamma function, for which it is convenient to go back to Barnes's original papers on the 
gamma function (Barnes 1899). From there the equality is obtained: 
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for larg X I  < T ,  and n arbitrary, and where B,(x) and B ,  are the Bernoulli polynomials and 
numbers respectively. Jn(z, E) is some function (note not Bessel) such that IJ,(z, .)I --f 0 
as 1x1 --f CO. This is implied by later use of Jn(z). 

Applying this asymptotic equality to T,(s) now gives 

~,(s) = tb-s-1 exp 1 
r = l  

with 
P P 

a =  2 E m -  2 P m  
m = 1  m = l  

and 

Now using the exponential expansion 

a a2 
exp (;) = 1+7+%;+ ... 

then 

+- + ...) 

Hence, by multiplying out and collecting the same powers of t ,  

where this new Jn'(t, s)'has absorbed the terms arising from powers of t greater than tn, and, 
from the process of collecting like terms, f r ( s )  is given by 

where the sum is over all combinations of the r numbers p ,  q, U ,  ... w such that 

and 
rp+(Y-l)q+(Y-2)u+ ... + w  = Y 

0 < p , q , u  ,... w C Y .  

This expansion for T,(s) is valid at all s, and defines J,'(t, s) at all s. Now?, the only poles 
of T,(s) arise from r ( t - s )  and are at s = t ,  t + l ,  t+2,  ... . So Jn'(t, s) has its only poles at 
s = t, t + l ,  t+2, ... , 
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3. The Barnes integral 

m 
A function T(s) is now defined by 

T(s) = 2 Tt(s). 
t =o  

From the above asymptotic expansion for T,(s), for large t 

so T(s) can be defined by this series for Re(s - 6) > 0, and in this region T(s) can be written 

Now, a function S(s) is defined at all s by 

Then for Re(s- 6) > 0, T(s) = S(s), where [(x) is the Riemann zeta function. It can be 
seen directly that S(s) has poles at s = 0, 1, 2, ... , Now, if we consider the regions outside 
these values of s, then To(s) has no poles and neither has Jn’(t, s). Further, IJ i ( t ,  s)I + 0 
as t -+ CO, so 

t = 1  

has no poles for Re(n+ s- 6) > 0. In this region [ ( r +  1 - 6 + s) has poles at s = 6 - Y, 
Y = 0, 1, 2, ... n. But n is arbitrary; therefore the only poles of S(s) outside s = 0, 1,2, ... are 
the series of poles at s = -Y ,  Y = 0, 1, 2, ... . 

Figure 1. 

These are shown in the diagram, where the contours v, K ,  h are defined such that K 

encloses K + 1 of the s = 6 - n poles, v is parallel to the imaginary axis, and A is an arc of a 
circle which does not pass through any of the s = n poles and terminates on the v contour. 

= Av(x) + AJx) + AJx), and 
the A v , j , , x ( x )  are defined by 

The integrals A v , r c , L ( ~ )  are now considered where Ay + 

A,,,,v(x) = - - 1 S(s)xsds. 
2ni IC.I.V 
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If the limit is taken as the radius of the contour X + CO, then A, + A encloses all the 
s = n poles and 

where 

If Re(6) < 0, then, as is done above, the definition of T(s) can be used to calculate the 
residues from the residues of the gamma function, as then in the region of these poles 
T(s) = S(s). If Re($) > 0, then the residues at the poles which are excluded from this region 
can be calculated via the residues of J;(t, s), and the result is the same. 

Now, let us consider the separate parts of the integrals: first A,(x). The  residues at the 
poles enclosed by this integral are obtained from ( 5 ) )  it being noted that the residue of 
[(x) at x = 1 is 1. So 

where s, = 6-r .  For A,(x) we have 

. S(s)xiv dz; 
XU 

h,(x)  = - - 
2x1 y 

where s = u+io, and so U = Re(6-0-K) with 0 < 0 < 1. That is, 

Ay(x) = J k ( x ) x 6 - k  

where IJk(x)I + O  as x --f cc. And for A,(x), from the asymptotic forms of the r ( z )  and 
[(x) functions, then in the limit as the radius of the arc -+ CO 

R,(x)  = 0. 

Adding all these contributions now gives the formula 

where k is arbitrary. 

4. The coefficientsfi(s,) 
The coefficients f,(s,) are now examined more closely. The  procedure is checked 

against the confluent hypergeometric coefficients, for these are found tabulated (Erdelyi et 
al. 1953). The rth coefficient is given byfr(sr); where s, = 6 - r  andf,.(s) is given by (4); SO, 
using the method of 0 2, 

fo(so) = aoo = 1 

fdsd  = all = a1 

So, if we note that 
B2(X) = x2-x++ 
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and 
B 3 ( X )  = X3--$X2+&X 

then, in particular, for the confluent hypergeometric function lFl( a, p, x), where now 
a = 1. 
L - I  

and 

These agree with the tabulated formulae. 
Xow, taking the 

function, then by a similar process 

fl(S1) = (El2  + az2 + %a2 + P1P 2 - XIPI. - alp2 - %P1- X 2 f  2 +Pl ,f P 2  - H1- a2) 

is obtained. 
When we attempt to obtain a general formula for thef2(s2) coefficient it soon becomes 

apparent that the algebra is formidable, but also that in particular functions with simple 
parameters, or simple relations between them, it is quick to use the formulae as given and 
calculate directly from these ; and so collecting these formulae gives 

f2(s2) = a2+hal2 
2 

a1 = 9 C ( B ~ ( % , ) - B ~ ( P ~ ) + B Z ( - S ~ ) - ~ )  
n = l  

2 

a2 = -4 2 { B z ( ~ n >  - B 3 ( p n )  + B 3 (  - s 2 ) )  

s2 = al .$x2-p1-p2-2 .  
n = l  

5. Evaluation of the coefficients from the solutions Y, 

equations 
The  asymptotic behaviour is required of the functions which form solutions to the 

Solving the equation (2)  by the serieg method gives the particular integral 

The  corresponding homogeneous equation is the confluent hypergeometric equation, 
and so the required complementary function is 

lFi(7-y-k 1, 1 +27, X ) .  

Similarly, the equation (3) has as a particular integral 
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and the required complementary function 

lFl(7 - y ,  1 -!- 27, X). 

For the five hypergeometric functions in these solutions the first- and second-order co- 
efficientsfi(SI) andf,(s,) as defined in (6) are evaluated by the method of 5 4 and tabulated 
below. 
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